Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38559219

RESUMO

Real-time tracking of intracellular carbohydrates remains challenging. While click chemistry allows bio-orthogonal tagging with fluorescent probes, the reaction permanently alters the target molecule and only allows a single snapshot. Here, we demonstrate click-free mid-infrared photothermal (MIP) imaging of azide-tagged carbohydrates in live cells. Leveraging the micromolar detection sensitivity for 6-azido-trehalose (TreAz) and the 300-nm spatial resolution of MIP imaging, the trehalose recycling pathway in single mycobacteria, from cytoplasmic uptake to membrane localization, is directly visualized. A peak shift of azide in MIP spectrum further uncovers interactions between TreAz and intracellular protein. MIP mapping of unreacted azide after click reaction reveals click chemistry heterogeneity within a bacterium. Broader applications of azido photothermal probes to visualize the initial steps of the Leloir pathway in yeasts and the newly synthesized glycans in mammalian cells are demonstrated.

2.
Nat Methods ; 21(2): 342-352, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38191931

RESUMO

Simultaneous spatial mapping of the activity of multiple enzymes in a living system can elucidate their functions in health and disease. However, methods based on monitoring fluorescent substrates are limited. Here, we report the development of nitrile (C≡N)-tagged enzyme activity reporters, named nitrile chameleons, for the peak shift between substrate and product. To image these reporters in real time, we developed a laser-scanning mid-infrared photothermal imaging system capable of imaging the enzymatic substrates and products at a resolution of 300 nm. We show that when combined, these tools can map the activity distribution of different enzymes and measure their relative catalytic efficiency in living systems such as cancer cells, Caenorhabditis elegans, and brain tissues, and can be used to directly visualize caspase-phosphatase interactions during apoptosis. Our method is generally applicable to a broad category of enzymes and will enable new analyses of enzymes in their native context.


Assuntos
Diagnóstico por Imagem , Nitrilas , Corantes
3.
Sci Adv ; 9(43): eadi2181, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37889965

RESUMO

Stimulated Raman scattering (SRS) microscopy has shown enormous potential in revealing molecular structures, dynamics, and couplings in complex systems. However, the sensitivity of SRS is fundamentally limited to the millimolar level due to shot noise and the small modulation depth. To overcome this barrier, we revisit SRS from the perspective of energy deposition. The SRS process pumps molecules to their vibrationally excited states. The subsequent relaxation heats up the surroundings and induces refractive index changes. By probing the refractive index changes with a laser beam, we introduce stimulated Raman photothermal (SRP) microscopy, where a >500-fold boost of modulation depth is achieved. The versatile applications of SRP microscopy on viral particles, cells, and tissues are demonstrated. SRP microscopy opens a way to perform vibrational spectroscopic imaging with ultrahigh sensitivity.

4.
Res Sq ; 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37886499

RESUMO

Deep-tissue chemical imaging plays a vital role in biological and medical applications. Here, we present a shortwave infrared photothermal (SWIP) microscope for millimeter-deep vibrational imaging with sub-micron lateral resolution and nanoparticle detection sensitivity. By pumping the overtone transition of carbon-hydrogen bonds and probing the subsequent photothermal lens with shortwave infrared light, SWIP can obtain chemical contrast from polymer particles located millimeter-deep in a highly scattering phantom. By fast digitization of the optically probed signal, the amplitude of the photothermal signal is shown to be 63 times larger than that of the photoacoustic signal, thus enabling highly sensitive detection of nanoscale objects. SWIP can resolve the intracellular lipids across an intact tumor spheroid and the layered structure in millimeter-thick liver, skin, brain, and breast tissues. Together, SWIP microscopy fills a gap in vibrational imaging with sub-cellular resolution and millimeter-level penetration, which heralds broad potential for life science and clinical applications.

5.
Sci Adv ; 9(24): eadg8814, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37315131

RESUMO

By optically sensing absorption-induced photothermal effect, mid-infrared (IR) photothermal (MIP) microscope enables super-resolution IR imaging of biological systems in water. However, the speed of current sample-scanning MIP system is limited to milliseconds per pixel, which is insufficient for capturing living dynamics. By detecting the transient photothermal signal induced by a single IR pulse through fast digitization, we report a laser-scanning MIP microscope that increases the imaging speed by three orders of magnitude. To realize single-pulse photothermal detection, we use synchronized galvo scanning of both mid-IR and probe beams to achieve an imaging line rate of more than 2 kilohertz. With video-rate speed, we observed the dynamics of various biomolecules in living organisms at multiple scales. Furthermore, by using hyperspectral imaging, we chemically dissected the layered ultrastructure of fungal cell wall. Last, with a uniform field of view more than 200 by 200 square micrometer, we mapped fat storage in free-moving Caenorhabditis elegans and live embryos.


Assuntos
Caenorhabditis elegans , Meios de Comunicação , Animais , Parede Celular , Frequência Cardíaca , Microscopia Confocal
6.
bioRxiv ; 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36909493

RESUMO

By optically sensing the mid-infrared absorption induced photothermal effect, midinfrared photothermal (MIP) microscope enables super-resolution IR imaging and scrutinizing of biological systems in an aqueous environment. However, the speed of current lock-in based sample-scanning MIP system is limited to 1.0 millisecond or longer per pixel, which is insufficient for capturing dynamics inside living systems. Here, we report a single pulse laserscanning MIP microscope that dramatically increases the imaging speed by three orders of magnitude. We harness a lock-in free demodulation scheme which uses high-speed digitization to resolve single IR pulse induced contrast at nanosecond time scale. To realize single pulse photothermal detection at each pixel, we employ two sets of galvo mirrors for synchronized scanning of mid-infrared and probe beams to achieve an imaging line rate over 2 kHz. With video-rate imaging capability, we observed two types of distinct dynamics of lipids in living cells. Furthermore, by hyperspectral imaging, we chemically dissected a single cell wall at nanometer scale. Finally, with a uniform field of view over 200 by 200 µm 2 and 2 Hz frame rate, we mapped fat storage in free-moving C. elegans and live embryos.

7.
Res Sq ; 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36909612

RESUMO

Enzymes are vital components in a variety of physiological and biochemical processes. Participation of various enzyme species are required for many biological events and signaling networks. Thus, spatially mapping the activity of multiple enzymes in a living system is significant for elucidating enzymatic functions in health and connections to diseases. Here, we report the development of nitrile (C≡N)-tagged enzyme activity reporters, named nitrile chameleons for the shifted peak between substrate and product. By real-time mid-infrared photothermal imaging of the enzymatic substrates and products at 300 nm resolution, our approach can map the activity distribution of different enzymes and quantitate the relative catalytic efficiency in living cancer cells, C. elegans, and brain tissues. An important finding is the direct visualization of caspase-phosphatase cooperation during apoptosis. Our method is generally applicable to a broad category of enzymes and will advance the discovery of potential targets for diagnosis and drug development.

8.
bioRxiv ; 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36945642

RESUMO

Stimulated Raman scattering (SRS) microscopy has shown enormous potential in revealing molecular structures, dynamics and coupling in a complex system. However, the bond-detection sensitivity of SRS microscopy is fundamentally limited to milli-molar level due to the shot noise and the small modulation depth in either pump or Stokes beam4. Here, to overcome this barrier, we revisit SRS from the perspective of energy deposition. The SRS process pumps molecules to their vibrational excited states. The thereafter relaxation heats up the surrounding and induces a change in refractive index. By probing the refractive index change with a continuous wave beam, we introduce stimulated Raman photothermal (SRP) microscopy, where a >500-fold boost of modulation depth is achieved on dimethyl sulfide with conserved average power. Versatile applications of SRP microscopy on viral particles, cells, and tissues are demonstrated. With much improved signal to noise ratio compared to SRS, SRP microscopy opens a new way to perform vibrational spectroscopic imaging with ultrahigh sensitivity and minimal water absorption.

9.
J Phys Chem B ; 126(43): 8597-8613, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36285985

RESUMO

Midinfrared photothermal (MIP) microscopy, also called optical photothermal infrared (O-PTIR) microscopy, is an emerging tool for bond-selective chemical imaging of living biological and material samples. In MIP microscopy, a visible probe beam detects the photothermal-based contrast induced by a vibrational absorption. With submicron spatial resolution, high spectral fidelity, and reduced water absorption background, MIP microscopy has overcome the limitations in infrared chemical imaging methods. In this review, we summarize the basic principle of MIP microscopy, the different origins of MIP contrasts, and recent technology development that pushed the resolution, speed, and sensitivity of MIP imaging to a new stage. We further emphasize its broad applications in life science and material characterization, and provide a perspective of future technical advances.


Assuntos
Microscopia , Microscopia/métodos
10.
Nat Commun ; 12(1): 7097, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876556

RESUMO

Photothermal microscopy has enabled highly sensitive label-free imaging of absorbers, from metallic nanoparticles to chemical bonds. Photothermal signals are conventionally detected via modulation of excitation beam and demodulation of probe beam using lock-in amplifier. While convenient, the wealth of thermal dynamics is not revealed. Here, we present a lock-in free, mid-infrared photothermal dynamic imaging (PDI) system by MHz digitization and match filtering at harmonics of modulation frequency. Thermal-dynamic information is acquired at nanosecond resolution within single pulse excitation. Our method not only increases the imaging speed by two orders of magnitude but also obtains four-fold enhancement of signal-to-noise ratio over lock-in counterpart, enabling high-throughput metabolism analysis at single-cell level. Moreover, by harnessing the thermal decay difference between water and biomolecules, water background is effectively separated in mid-infrared PDI of living cells. This ability to nondestructively probe chemically specific photothermal dynamics offers a valuable tool to characterize biological and material specimens.


Assuntos
Nanopartículas Metálicas/química , Microscopia/métodos , Amplificadores Eletrônicos , Neoplasias Encefálicas , Linhagem Celular Tumoral , Físico-Química , Processamento Eletrônico de Dados , Escherichia coli , Humanos , Razão Sinal-Ruído , Espectrofotometria Infravermelho
11.
Sci Adv ; 7(20)2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33990332

RESUMO

Mid-infrared (IR) spectroscopic imaging using inherent vibrational contrast has been broadly used as a powerful analytical tool for sample identification and characterization. However, the low spatial resolution and large water absorption associated with the long IR wavelengths hinder its applications to study subcellular features in living systems. Recently developed mid-infrared photothermal (MIP) microscopy overcomes these limitations by probing the IR absorption-induced photothermal effect using a visible light. MIP microscopy yields submicrometer spatial resolution with high spectral fidelity and reduced water background. In this review, we categorize different photothermal contrast mechanisms and discuss instrumentations for scanning and widefield MIP microscope configurations. We highlight a broad range of applications from life science to materials. We further provide future perspective and potential venues in MIP microscopy field.

12.
Chem Sci ; 12(5): 1930-1936, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34163957

RESUMO

Traditional electrochemical measurements based on either current or potential responses only present the average contribution of an entire electrode's surface. Here, we present an electrochemical photothermal reflectance microscope (EPRM) in which a potential-dependent nonlinear photothermal signal is exploited to map an electrochemical process with sub-micron spatial resolution. By using EPRM, we are able to monitor the photothermal signal of a Pt electrode during the electrochemical reaction at an imaging speed of 0.3 s per frame. The potential-dependent photothermal signal, which is sensitive to the free electron density, clearly revealed the evolution of surface species on the Pt surface. Our results agreed well with the reported spectroelectrochemical techniques under similar conditions but with a much faster imaging speed. We further mapped the potential oscillation during the oxidation of formic acid on the Pt surface. The photothermal images from the Pt electrode well matched the potential change. This technique opens new prospects for real-time imaging of surface chemical reaction to reveal the heterogeneity of electrochemical reactivity, which enables broad applications to the study of catalysis, energy storage, and light harvest systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...